Adhes.ru

Стройматериалы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность керамзитобетонных блоков: достоин ли особого внимания данный показатель

Теплопроводность керамзитобетонных блоков: достоин ли особого внимания данный показатель?

Любой строительный материал, предназначенный в первую очередь для возведения стен, обладает свойством теплопроводности в большей или меньшей степени. Данный показатель будет характеризовать климатические условия внутри здания: теплообмен и уровень влажности.

Одним из стеновых материалов, отвечающим требованиям современного домостроения, является керамзитобетон. А теплопроводность керамзитобетонных блоков – одно из самых основных достоинств изделий из этого материала. Об этом немаловажном показателе и пойдет речь в данной статье.

Анализ гигроскопичности теплоизоляции

Все теплоизоляционные материалы обладают общим минусом. У них есть способность впитывать влагу из воздуха. Эта способность называется гигроскопичностью теплоизоляции. Такой недостаток необходимо ликвидировать, чтобы эффективность утеплителя оставалась на высоком уровне. Гигроскопичность измеряется процентным соотношением массы поглощенной влаги к массе веса материала.

Наименование продуктаВодопоглощение,% от массы
Минвата1.5
Пенопласт3
Эковата1
Пеноизол18

Из данной таблицы видно, что у пеноизола высокий процент поглощения влаги. Но при этом пеноизол способен равномерно распределять и выводить воду. А это значит, что он не теряет своих свойств. Минеральная вата, напротив, имеет низкий процент гигроскопичности. Но если влага попадет в ее волокна, то удерживается внутри. Коэффициент теплопроводности понижается.

Применение ракушечника

Плитка из стенового камня ракушечника предназначается для наружной и внутренней облицовки зданий в качестве стенового материала, а так же декоративной отделки элементов архитектурных сооружений. Используя гидрофобизирующие пропитки можно добиться существенного повышения долговечности и прочности материала к жестким погодным условиям.

Ракушечник имеет приемлемую истираемость. Его можно смело применять для облицовки лестничных маршей и входных групп жилых помещений. Ступени лестницы, отлитые из бетона, облицовывают плиткой толщиной 2-2,5 см. Желательно, чтобы камень был не полированным, а с бучардированной или пиленой фактурой, чтобы не поскользнуться.

Ракушечник – жаропрочная порода. У ценителей прекрасного в большом почете камины с порталами, выполненными из ракушечника. Камень идеален для художественной обработки. Профессиональный резчик по камню легко перенесет на портал вашего камина любую художественную идею.

Теплопроводность материалов

Ярко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Каждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Из рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Теплопередача стеклопакета

Так как световые проемы занимают до 70% общей площади профильной конструкции, они больше всего влияют на энергоэффективность. Сопротивление теплопередаче стеклопакетов можно считать ключевым параметром при поиске подходящих окон. Этот показатель помогает оценить возможные теплопотери. Если створки и рамы собрать из 6-камерных энергоэффективных профилей нового поколения, а в световых проемах установить базовые однокамерные стеклопакеты толщиной 16-20 мм, окна будут пропускать холод и окажутся непригодными для эксплуатации в центральных, западных и северных регионах.

Чтобы понизить коэффициент теплопередачи стеклопакета, невозможно бесконечно увеличивать его толщину. Количество камер тоже ограничено. Поэтому для уменьшения утечек тепла была разработаны технологии, которые позволили существенно улучшить энергоэффективность стеклопакетов:

  1. Закачка во внутренние камеры инертного газа – этот метод помогает снизить конвекцию.
  2. Нанесение на внутреннюю сторону одного из стекол специального металлизированного слоя, который пропускает свет и отражает инфракрасные окна.
  3. Оснащение стеклопакетов невидимыми нагревательными элементами, выполняющими функцию тепловой завесы.

На текущий момент производители активнее всего применяют 2 вариант. Селективные энергосберегающие стеклопакеты в буквальном смысле удерживают тепло внутри помещений и сокращают расходы на их обогрев. Однокамерная модель этого класса способна заменить тяжелый 2-камерный стеклопакет толщиной 40 мм. Подробнее о них можно узнать из тематической статьи на ОкнаТрейд. Также эффективно комбинированное применение инертного газа и селективного слоя.

Коэффициент сопротивления теплопередачи стеклопакетов

Чем выше приведенное сопротивление теплопередаче стеклопакета, тем теплее окно. Эту физическую величину рассчитывают по формуле:

Ro=1/k, где k – коэффициент теплопроводности, которым пользуются в странах со стандартами DIN.

В России выбрали обратную величину, поскольку она интуитивно понятна нашим гражданам. Ведь с ростом Ro увеличивается энергоэффективность окна — от значения коэффициента зависит, сколько тепла пройдет при определенной разнице температур через 1 м² стеклопакета. Производители при изготовлении продукции должны ориентироваться на сопротивление теплопередачи стеклопакета, ГОСТ допускает диапазон Ro от 0,3 до 0,8 м²×°C/Вт.

Расчет коэффициента теплопроводности

Для потребителей используют максимально упрощенную информацию, поскольку покупателя интересует конечный результат. В реальности расчет коэффициента теплопроводности — достаточно сложный процесс. Ведь стеклопакет состоит из нескольких составных элементов:

  • дистанционная рамка;
  • воздух или инертный газ;
  • селективный слой;
  • стекло.

Все перечисленные материалы обладают разной теплопроводностью, и этот фактор учитывается при лабораторных испытаниях и расчетах. Однако для понимания происходящих процессов в большинстве случаев используют упрощенную формулу:

T – разница температур в комнате и на улице;
S – площадь стеклопакета;
W – количество тепловой энергии, проходящей через световой проем.

Для заказчиков эта формула исчерпывающе характеризует теплозащитные свойства стеклопакета. Кроме того, ее вполне достаточно, чтобы самостоятельно определить расходы на отопление зимой. С помощью такой формулы можно рассчитать, какое количество энергии покинет внутренние помещения через световой проем.

Сопротивление теплопередачи оконного стеклопакета (таблица)

При заказе окон покупателю не требуется самостоятельно проводить расчеты или обращаться за помощью к менеджерам. Производители предоставили все необходимые теплотехнические характеристики востребованных в нашей стране моделей стеклопакетов. В подавляющем большинстве случаев эта информация соответствует реальным данным и ее можно смело использовать. Когда изучается сопротивление теплопередаче стеклопакетов, таблица помогает быстрее всего помогает найти подходящую модель. Ведь в ней максимально просто и понятно систематизирована информация.

Формулу стеклопакета нужно расшифровывать в такой последовательности: стекло – внутренняя камера – стекло. Латинская буква «a» означает, что в камеру закачан инертный газ аргон, а «k» — на стекло нанесено металлизированное покрытие с энергосберегающим эффектом. Таблица показывает, что самые теплые — стеклопакеты с селективным слоем и газом в 2 камерах. Для сравнения специально были взяты модели с одинаковыми размерами и параметрами, чтобы продемонстрировать преимущества использования низкоэмиссионного покрытия и аргона.

В процессе выбора не рекомендуется ориентироваться только на коэффициент теплопередачи стеклопакетов — таблица содержит сведения о звукоизоляции, которую тоже нужно учитывать. Особенно это актуально при заказе пластиковых окон для эксплуатации в шумных районах.

При выборе стеклопакета важно учитывать площадь световых проемов. Ведь с увеличением этого параметра растут теплопотери. Значит, в таком случае потребуются максимально эффективные стеклопакеты. У маленьких окон, наоборот, площадь профильной конструкции сопоставима с площадью остекления, поэтому можно выбрать модель с меньшей энергоэффективностью.

Коэффициент теплообмена α выражает количество тепла, которое за одну секунду обменивается между 1 м 2 твердой поверхности и касающимся его воздухом, когда разница температур между поверхностью и воздухом составляет 1 К. Единица измерения: Вт/(м 2 ×K).

Трансмиссионный поток теплоты через ограждающую конструкцию (передающаяся тепловая нагрузка) определяется следующим образом:

A — площадь поверхности элемента здания, м 2 ;

U — коэффициент теплопередачи ограждающей конструкции, Вт/(м 2 ×K);

R=1/U— сопротивление теплопередаче ограждающей конструкции, (м 2 ×К)/Вт;

ti — температура воздуха внутри помещения, °C;

te — температура наружного воздуха, °C.

Коэффициент теплопередачи (U) для элемента здания, представляющего собой многослойную конструкцию, вычисляется по следующему соотношению:

αi — коэффициент теплообмена на внутренней поверхности ограждения;

αe коэффициент теплообмена на внешней поверхности ограждения;

hi толщина i-го слоя ограждающей конструкции;

n — количество слоев в многослойной ограждающей конструкции;

λi — коэффициент теплопроводности i-го слоя ограждающей конструкции;

U — коэффициент теплопередачи элемента здания;

RU — сопротивление теплопередаче 1/U;

Rλi — коэффициент термического сопротивления i-го слоя ограждающей конструкции.

Принятые на сегодняшний день в России стандарты не регламентируют значения коэффициента теплопередачи (U) для различных элементов зданий. Вместо этого для каждого слоя элемента должен быть определен коэффициент термического сопротивления Rλi, зависящий от коэффициента теплопроводности этого слоя. На рис. 2.11 приведен пример, взятый из действующего СНиП, регламентирующий значения коэффициентов теплопередачи стен, крыш и перекрытий для различных регионов России (для внутренней температуры 19 °С). Коэффициенты теплопроводности материалов можно найти в стандартных спецификациях к зданию. Тогда, как следует из только что приведенного соотношения, сумма значений коэффициентов термического сопротивления отдельных слоев и коэффициентов сопротивления теплообмену на внутренней и внешней поверхностях ограждения Ri=1/αi или Re=1/αe дает величину общего коэффициента сопротивления теплопередаче элемента здания RU=1/U.

Формула для расчета значения коэффициента теплопередачи (U), приводимого в стандарте, выглядит следующим образом:

Un=ΔUA+ΔUS, где ΔUA и ΔUS характеризуют величины, связанные с изменением комфортной температуры и влиянием рассеянного солнечного излучения, соответственно.

Рис. 2.11. Нормированные значения коэффициента сопротивления теплопередаче для различных регионов России в соответствии с действующими СНиП

Тепловые потери через расчетные строительные конструкции, а именно наружные стены, пол, верхнее междуэтажное перекрытие или крышу, характеризуются коэффициентами теплопередачи U, Вт/(м 2 ×К) (в действующих СНиП РФ используется обратная величина R2 ×°С)/Вт). Эта величина показывает, сколько тепла отдается строительной конструкцией наружу в единицу времени при изменении температуры на 1 °С (или 1 К).

Для расчета тепловых потерь через стену необходимо перемножить коэффициент U, площадь и разность температур. Например, типичный коттедж имеет снаружи площадь стен 100 м 2 .

При суровых условиях в зимнее время в Средней Европе наружная температура составляет –12 °C, а требуемая внутренняя температура 21 °C. При различных значениях коэффициентов теплопередачи получается следующая мощность тепловых потерь (тепловой поток) через наружные стены при «расчетных условиях» (см. табл. 2.3).

Таблица 2.3. Расчетная мощность тепловых потерь через наружные стены (По данным Института пассивного дома (см. http://www.passiv-rus.ru/?page=87 ). Следует обратить внимание, что при адаптации этих данных к суровым климатическим условиям России нужно учитывать следующее: наружные температуры опускаются ниже (а значит, перепад температур — выше), а отопительный период — продолжительнее. Методику расчетов с практическими примерами можно найти в справочных материалах на CD, прилагаемом к данной книге.

Мощность тепловых потерь, Вт

Нормируемый годовой расход тепла на отопление, КВтч/(м 2 ×год)

В Средней Европе

В России

Тепловые потери являются решающей составляющей энергетического баланса здания. Любые тепловые потери необходимо компенсировать соответствующими тепловыми поступлениями. В противном случае произойдет падение температуры в доме.

С помощью компактной типовой системы отопления для пассивного дома можно выработать около 1000 Вт мощности (это мощность обычного фена для сушки волос). Так как большая часть этой мощности пойдет на компенсацию тепловых потерь от наружных стен, то, конечно же, коэффициент теплопередачи стены U должен быть действительно очень низким (или должно быть очень высокое значение сопротивления теплопередаче R).

Что же это означает для теплоизоляционной оболочки здания?

В первую очередь становиться ясно, что достижение таких низких величин U (или высоких R) возможно только благодаря материалам с высокими теплоизоляционными характеристиками. В табл. 2.4 приведена информация о том, какой толщины должны быть однослойные наружные конструкции, чтобы достичь стандартных характеристик ограждающих конструкций дома с величиной U 2 ×К) (или R>7,7 (м 2 ×°С)/Вт).

Таблица 2.4. Данные о толщине однослойных наружных конструкций, позволяющих достичь стандартных характеристик ограждающих конструкций пассивного дома (По данным Института пассивного дома ( http://www.passiv-rus.ru/?page=87 Прим. ред.)

Материал

Коэффициент теплопроводности, Вт/(м°×С)

Требуемая толщина в м для достижения U=0,13 Вт/(м 2 ×К) или R= 7,7 (м 2 ×°С)/Вт

Пустотелый кирпич с вертикальными пустотами

Древесина хвойных пород

Пористый кирпич, ячеистый бетон

Нанопористый суперутеплитель с нормальным давлением

Вакуумная теплоизоляция (кремнезем)

Вакуумная теплоизоляция (глубокий вакуум)

В таблице наглядно показано, что разумные границы по толщине наружной оболочки здания возможны только в том случае, если достигается существенный теплоизоляционный эффект с использованием утеплителей с низкими значениями коэффициентов теплопроводности. Для этого подходят все материалы, расположенные в табл. 2.4. Конечно же, комбинация с другими материалами не только возможна, но и во многих случаях необходима. Например: утепленная снаружи бетонная стена или монолитная стена из пенобетона с теплоизоляционными плитами из силиката кальция.

6.1. Тонкости наружной оболочки

Конструкция наружной оболочки будет тем тоньше, чем ниже коэффициент теплопроводности используемой теплоизоляции. Так, для пассивного дома (в условиях Германии) при применении в качестве наружных стен блоков из прессованной соломы необходимая толщина составит около 50 см или более. При применении более эффективных утеплителей (минеральная вата, пенополистирол, целлюлозная теплоизоляция) толщина теплоизоляции составит около 30 см. При использовании высокоэффективных утеплителей, таких как пенополиуретан, толщина теплоизоляции снизится до 20 см.

Есть и еще более эффективные виды теплоизоляции. Так, например, в Германии в настоящее время допущена к применению вакуумная теплоизоляция. С использованием вакуумных изоляционных панелей (ВИП) можно действительно получить очень эффективную и одновременно тонкую наружную оболочку. Не менее успешно зарекомендовал себя и другой вариант — «полупрозрачная теплоизоляционная оболочка».

При этом суммарная солнечная радиация абсорбируется не на поверхности оболочки, а проходит в глубину теплоизолированной конструкции, чтобы снизить разность температур и достичь низкого значения коэффициента теплопередачи U, эквивалентного требуемым значениям.

6.2. Увеличение толщины эффективной теплоизоляции

Опыт строительства первых пассивных домов показал, что увеличение толщины эффективной теплоизоляции можно реализовать в большинстве случаев:

голоса
Рейтинг статьи
Читайте так же:
Кирпичи внутри железной печки
Ссылка на основную публикацию
Adblock
detector