Adhes.ru

Стройматериалы
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое цемент — свойства, из чего делают

Что такое цемент — свойства, из чего делают

Цемент – это распространенный материал не только в строительстве, но и в декорировании. Из него создают строительные блоки и целые фундаменты, элементы интерьера или сада. Но чаще всего он используется в возведении сооружений. Рассмотрим подробнее этот материал, что это такое и из чего делают цемент.

  1. Что такое цемент — описание и технические характеристики
  2. История появления и сфера использования
  3. Из чего сделан цемент, состав и пропорции сырья
  4. Марки цемента, какие бывают, применение
  5. Маркировка по виду добавок
  6. Что такое цементный клинкер
  7. Корректирующие добавки
  8. Производство цемента, основные этапы изготовления

2.Специфика производства

Изготовление цемента предусматривает выполнение следующих производственных стадий:

1.добычу сырья, содержащего гипс, глину, известняк;

2.дробление добытого известняка, обеспечение требуемой влажности полученного продукта;

3.измельчение известняковой массы, смешивание с глиной. Соотношение известняка и глины изменяется в зависимости от особенностей используемого сырья, ориентировочно соответствует пропорции 3:1. Результат – получение комбинированного, сухого или мокрого шлама;

4.обжиг сырьевой массы при температуре до 1,5 тысячи градусов Цельсия, при котором происходит спекание шлама. Состав при этом превращается в гранулированную фракцию, называемую клинкером;

5.измельчение до порошкообразной фракции клинкера с использованием специальных мельниц;

6.дозирование и смешивание ингредиентов согласно марке будущего цемента. Процесс смешивания предусматривает введение до 5% гипса и специальных минеральных добавок.

Полимерное сырье

Непростая задача — подобрать максимально похожие по составу изделия из пластика для дальнейшей работы.

Среди широкого многообразия полимерных отходов можно выделить следующие группы сырья:

  1. Полиэтилен (ПЭ). Он бывает двух видов — полиэтилен высокого (ПВД) и низкого давления (ПНД). Принципиальное отличие состоит в эластичности. ПВД более гибкий, податливый и морозостойкий. ПНД наоборот тверже, жестче и несколько хуже держит мороз. Чаще всего при производстве пластиковых труб используют их комбинации. Так и во вторичной трубе можно подбирать состав в зависимости от предпочтений по свойствам. Меняя соотношение ПНД/ПВД, можно регулировать эксплуатационные характеристики технических труб.
  2. Полипропилен. Универсальный материал для экструзии трубного профиля. Как правило, в смеси пластиковых отходов присутствуют гомо- , блок- и рандом-сополимеры полипропилена. Но они достаточно близки по свойствам, кроме того, их смеси хорошо перерабатываются в различных пропорциях без потери качественных характеристик.
  3. Поливинилхлорид (ПВХ). Так же относится к универсальному сырью для пластиковых труб. С ПВХ труднее работать, так как он нуждается в дополнительной стабилизации и очень быстро теряет свои свойства при экструзии. Изделия из вторичного ПВХ будут крайне недолговечны. Тем не менее, вторичный ПВХ часто добавляют в состав канализационных труб.

Как делают белый цемент

Белый цемент, производство которого несколько отличается от технологии выпуска серого продукта, может выпускаться как мокрым, так и сухим способом. Отличается технология тем, что исходное сырье обжигается при высокой температуре и затем быстро охлаждается водой.

Читайте так же:
Кладочные растворы печи цемент

Клинкер этого вида продукции складывается из минеральных добавок, известняка, гипса, соли и других компонентов. Исходное сырье готовится из карбонатной и глинистой породы: известняка, каолиновой глины, отходов обогащения, кварцевого песка.

Основным достоинством и отличительной чертой белого цемента является его белоснежность. Но его производство обходится намного дороже по сравнению с серым продуктом.
Источник

Стандарты пластиковых труб

Трубы из пластика для канализации имеют длину 3, 6, 10, 12 метров и диаметр 40, 50, 85 и 100 миллиметров. При выборе пластмассовых труб нужно обратить внимание на их качество: наличие пузыристых участков, вздутий, различных посторонних элементов и неровная поверхность – любой из этих признаков говорит о том, что такую трубу стоит обойти стороной (подробнее: «Пластиковые трубы для канализации — виды и размеры»). Концы труб должны быть ровно обрезаны и зачищены от шероховатостей.

Чтобы соединить раструб канализационной трубы из пластика, используется сварка или специальный клей (прочитайте также: «Соединение труб канализации — как соединить своими руками»). Герметичность соединения обеспечивают резиновые манжеты, которые также должны проверяться на предмет наличия дефектов.

В промышленности выбор материала никогда не определяется волей случая. На стадии разработки свойства и характеристики материала должны быть тщательно исследованы, чтобы избежать сложностей в будущем и связанных с ними дополнительных затрат. В особенности это относится к случаям выбора материала, который должен быть использован для изготовления трубы. Причиной является тот факт, что некоторые трубы подвергаются значительным механическим, термическим или химическим нагрузкам в зависимости от проходящей по ним жидкости, определяющую роль при этом играет давление и температура. Материал, из которого изготовлена труба, оказывает влияние на все производственные процессы, включая механическую обработку. Обрабатываемость трубы напрямую зависит от материала изготовления, для каждого данного вида материала должны быть приняты специфические меры предосторожности для гарантии качественной обработки. Механическая обработка является широко распространенной операцией для подготовки детали к сварке, когда, например, конец трубы должен быть обработан под специфичным углом, чтобы сварной шов мог пройти по всей толщине материала трубы.

МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ПРОИЗВОДСТВА ТРУБ, И ИХ ОБРАБАТЫВАЕМОСТЬ

В промышленности выбор материала никогда не определяется волей случая. На стадии разработки свойства и характеристики материала должны быть тщательно исследованы, чтобы избежать сложностей в будущем и связанных с ними дополнительных затрат. В особенности это относится к случаям выбора материала, который должен быть использован для изготовления трубы. Причиной является тот факт, что некоторые трубы подвергаются значительным механическим, термическим или химическим нагрузкам в зависимости от проходящей по ним жидкости, определяющую роль при этом играет давление и температура.
Материал, из которого изготовлена труба, оказывает влияние на все производственные процессы, включая механическую обработку. Обрабатываемость трубы напрямую зависит от материала изготовления, для каждого данного вида материала должны быть приняты специфические меры предосторожности для гарантии качественной обработки.
Механическая обработка является широко распространенной операцией для подготовки детали к сварке, когда, например, конец трубы должен быть обработан под специфичным углом, чтобы сварной шов мог пройти по всей толщине материала трубы.

Читайте так же:
Сухая смесь м300 цементная плотность

СТАНДАРТНАЯ СТАЛЬ

Трубы из обычной стали являются наиболее распространенным типом труб благодаря своей низкой стоимости и механическим свойствам, позволяющим применять их для очень большого диапазона задач. Стальные трубы являются прочными, долговечными и поддаются деформации. Это означает, что они могут быть использованы для задач с существенно отличающимися показателями температуры и давления. Стандартные стальные трубы также обычно используются в ситуациях, где трубопровод испытывает влияние ударной силы или вибрации (под дорожным покрытием, например). Кроме того, процессы производства, сгибания и резки стальных труб являются достаточно несложными.
Однако такие трубы обладают склонностью к коррозии, если не проводить профилактику. Гальванизация является наиболее распространенным способом борьбы с коррозией; она заключается в нанесении цинкового покрытия на поверхность стальной трубы.
Низколегированная сталь (т. е. сталь с низким содержанием углерода на уровне от 0,008% до 2.14%) легко подвергается обработке. Если уровень содержания углерода увеличивается, свойства материала (такие как твердость, механическая прочность) значительно улучшаются. Так, обработку стали с высоким содержанием углерода выполнить сложнее.

СТАЛЬ Р91

Сталь марки Р91 представляет собой сплав стали с высоким содержанием хрома (9%) и молибдена (1%). Добавление хрома увеличивает механическую прочность сплава при высоких температурах, а также повышает устойчивость коррозии, а добавление молибдена улучшает крипоустойчивость. Небольшое количество также добавляемых никеля и марганца повышает общую плотность материала. Сталь Р91 очень чувствительна к изменениям ее микроструктуры, которые могут произойти при перегреве. Эти изменения микроструктуры приводят к ослаблению свойств материала. В связи с этим для резки такого материала часто предпочитают холодную обработку.
Сталь Р91 изначально была создана для применения в производстве трубопроводов на тепловых электростанциях обычного типа или атомных электростанциях, где пар покидает пароперегреватель котла на современных обычных/тепловых электростанциях при температуре от 570°С до 600°С под давлением 170-230 бар. Это означает, что завершающие фазы процесса, происходящие в пароперегревателе и трубопроводах, доставляющие пар турбины, должны выдерживать эти экстремальные условия. В данном случае, неизменная высокая механическая прочность стали Р91 делает верным выбор в ее пользу.

Использование стали Р91 в таких условиях позволяет инженеру сократить толщину трубопровода и одновременно увеличить рабочую температуру, что в совокупности улучшает общую термодинамическую эффективность подобных станций.
Высокая механическая прочность стали Р91 также означает сложность ее механической обработки. Так, должна производится регулярная замена режущего инструмента, чтобы обработка производилась всегда достаточно острым инструментом, скорость резания должна быть небольшой и поддерживаться на этом уровне. Глубина прохода также может быть отрегулирована для того, что увеличить скорость обработки.

Читайте так же:
Какие бывают цементные трубы

СТАЛЬ-ДУПЛЕКС

Нержавеющая сталь-дуплекс состоит из нержавеющей хромистой стали с добавлением никеля. Кристаллическая решетка состоит как из феррита, так и из аустенита, отсюда и название дуплекс. Этот сплав был создан для повышения устойчивости к коррозии и предела прочности на разрыв. Применение труб из дуплекс-стали широко распространено на газовых и нефтяных морских платформах, где трубопроводы подвержены воздействию больших давлений и солей. Трубы из дуплекс-стали также можно встретить в отраслях промышленности, которые работают с хлорсодержащими веществами и кислотами, таких, как, например, химическая или фармацевтическая промышленность. За последние несколько лет появились более высоколегированные дуплекс-стали, такие как супер-дуплекс или гипер-дуплекс.
Трубы из дуплекс-стали относительно сложно обрабатывать за счет предела их прочности на разрыв и высокого условного предела текучести. Это может привести к очень высоким температурам в процессе резки и пластической деформации трубы. В любом случае, инструментальная оснастка и прижим должны быть в достаточной мере жесткими и обладать стабильными характеристиками для того, чтобы можно было выполнить механическую обработку трубы из дуплекс-стали.

Нержавеющие стали

Так же, как и обычные виды стали, нержавеющие стали содержат в своем составе железо и углерод, к которым добавлен хром. При нарушении точной пропорции содержания хрома (10,5%) на стальной поверхности формируется слой оксида хрома. Этот так называемый «пассивный слой» химически инертен, устойчив к коррозии и прочен.
С целью улучшения механической прочности или устойчивости к воздействию высоких температур в сплавы могут добавлять другие элементы (например, никель для повышения механической прочности, молибден, титан, ванадий, вольфрам — для улучшения температурной устойчивости).
Несмотря на значительную разницу в стоимости по сравнению с трубами, изготовленными из обычной стали, трубы из нержавеющей стали также широко распространены и применяются во многих отраслях промышленности (химическая, нефтяная, фармацевтическая, пищевая, воздухоплавание, судостроение и др.).

Они пользуются популярностью благодаря устойчивостью к коррозии и химической стабильностью, что делает трубопроводы из нержавеющей стали пригодными для жидкостей, которые не должны подвергаться загрязнениям (фармацевтическая промышленность, пищевая промышленность и пр.), и для коррозинно-активных жидкостей (в частности, в химической промышленности).

Обрабатываемость нержавеющей стали в большой степени зависит от пропорций легирующих добавок. В частности, высокое содержание хрома, никеля или титана делает обработку более сложной, в то время как добавление углерода или серы облегчает обработку.

Режущий край должен быть остро заточенным, чтобы облегчать разделение материала и сократить силы реза.
Режущий инструмент должен соответствовать узлам, куда он должен быть установлен, и сам станок должен быть в достаточной мере жестким, чтобы создавать и поддерживать усилия, требуемые для выполнения резки; как показывает практика, усилия, требуемые для резки деталей из нержавеющей стали могут более чем на 50% превышать свои значения, достаточные для резки изделий из обычной углеродистой стали.

Читайте так же:
Кирпич или пенобетон для ванной

СПЕЦИАЛЬНЫЕ СПЛАВЫ (СУПЕРСПЛАВЫ)

Большинство специальных сплавов, применыемых для производства труб, принадлежит к категории сплавов на никелевой основе со сверхвысокими характеристиками. Эта категория включает инконель и аустенит, носящих название в честь их производителей.

Таким образом, основой сплава является никель, который может быть смешан с хромом, железом, титаном или алюминием. Эти сплавы обладают теми же преимуществами, что и нержавеющие стали, только выраженными в большей степени. Так, их жаростойкость выше (около 900°С), чем их коррозиооная стойкость (коррозия в хлор-ионе, чистой воде и каустической соде средняя). К тому же они существенно дороже по стоимости, чем обычные сплавы, но их применение оправдано для задач, когда безопасность оператора является ключевым критерием.

Трубы, изготовленные из специальных сплавов на никелевой основе, находят применение в воздухоплавании (например, в камерах сгорания), химической промышленности (благодаря своей коррозионной стойкости), атомной инженерии и, правда, в меньшей степени, в пищевой промышленности.

Особые сплавы считаются труднообрабатываемыми. На это есть ряд причин. Во-первых, нужно учитывать, что 70% тепла возвращается непосредственно на режущий инструмент (в отличие, например, от 15% в случае с обычной сталью). Следовательно, очень важно, чтобы режущая кромка поддерживалась охлажденной во время механической обработки. Вторая сложность заключается в прочности материала; фактически срок службы режущего инструмента, используемого для обработки специального сплава, может сократиться до нескольких минут, если инструмент не обладает необходимыми мощностными характеристиками, или в случае несоответствия скорости резки и режущего инструмента.

ТИТАН

Титан является металлом, представляющим исключительный интерес для промышленности. Он может применяться в производстве труб, являющихся одновременно легкими и в то же время очень устойчивыми к коррозии и способными выдерживать очень высокие температуры (600°С). Его механические свойства (прочность, усталость и вычитаемость) также высоко ценятся. Вместе с тем титан является дорогостоящим материалом, и это ограничивает его использование для выполнения специфических задач. Вообще, его используют в области авиации и воздухоплавания, где сочетание его низкой плотности и прекрасных механических свойств делает его материалом первой необходимости.
Поскольку коэффициент теплопроводности титана является очень низким (примерно в 10 раз ниже, чем у стали), тепловыделение во время обработки остается на относительно низком уровне. По этой причине режущая грань должна быть должным образом охлаждаться, чтобы избежать дефектов при механической обработке.
Необходимо использовать хорошо заточенный режущий инструмент для облегчения разделения материала, и тем самым сокращения усилия резания.
Еще более сложной является обработка очищенного титана (например, очистка при осадкообразовании, содержании хрома).

Читайте так же:
Задачи разные цемент один

АЛЮМИНИЙ

Алюминий широко применяется в промышленности. Алюминиевые трубы являются недорогими, удобными при соединении и формировании цельной конструкции. Помимо этого, они отличаются легкостью и устойчивостью к коррозии, что делает естественным выбор в их пользу в авиации и воздухоплавании, на транспорте и в строительстве. Алюминиевые трубы также применяются в строительстве воздуховодов для сжатого воздуха.

Уровень жесткости алюминиевых труб очень низкий, а потому они легко подвергаются механической обработке. Тем не менее пластичность алюминия может вызвать определенные проблемы (к примеру, стружка может создать помехи для обработки). В таком случае наилучший эффект даст увеличение скорости резания, глубины прохода и скорости подачи. Существует также риск деформации алюминиевых труб во время обработки, если ошибочно выбран инструмент для обработки, а именно, зажимные кулачки.

Высокий коэффициент теплопроводности алюминия обеспечивает хороший показатель тепловыделения. Поэтому скорость резки может увеличиваться без одновременного сокращения срока службы рещущих инструментов.

  • Annexe
    • General Sales Conditions

Contact

PROTEM GmbH

Am Hambiegel, 27
76706 Dettenheim | GERMANY
E-Mail: info@protem-gmbh.de

Телефон : +49 (0) 7247 9393 — 0
Факс : +49 (0) 7247 9393 — 33

E-MAIL РАССЫЛКА

Внесите пожалуйста ваш адрес электронной почты и вы будете получать важную информацию

Способы монтажа и соединения

Монтаж трубопроводов принципиально не отличается от возведения конструкций из прямошовных аналогов. Сварное соединение наиболее надежно и применяется для систем с высоким давлением, при работе с кислотами и щелочами. Для сред низкой агрессивности с температурой до 100 С⁰ допускается крепление на резьбе, но при вибрационных воздействиях возможно самопроизвольное отвинчивание.

  • Сварка: выбор метода зависит от технических параметров;
  • Резьба: если позволяет толщина металла нарезается производителем или на токарном станке, для герметизации применяют уплотнители.
  • Особотонкостенные (до 20 мм) — газовая сварка. Аппараты малой мощности не вызывают перегрева и позволяют выполнить аккуратный шов даже новичку.
  • Тонкостенные (от 20 мм) — электросварка встык;
  • Толстостенные — электросварка после снятия V-образной фаски.

Для организации разводки применяются приварные и резьбовые фасонные детали, направление изменяют трубогибами. Для инженерных сетей с давлением до 250 кгс/см² можно использовать воротниковые фланцы.

Нередко бесшовные трубы изготавливают из нержавеющих сталей, специальных сплавов и цветных металлов. В таком случае монтаж проводят в соответствии с технической документацией, подбирают способ и режимы сваривания, электроды. При выборе методов сварки учитывают назначение трубопровода: для некоторых систем крайне важна химическая стойкость шва, для других — термостойкость.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector